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The Rayleigh-Taylor (RT) instability develops and leads to turbulence when a heavy
fluid falls under the action of gravity through a light one. We consider a model in
which the RT instability is accompanied by a reactive transformation between the
fluids. We study the model using direct numerical simulations (DNSs), focusing on the
effect of the reaction (flame) on the turbulent mixing. We discuss ‘slow’ reactions in
which the characteristic reaction time exceeds the temporal scale of the RT instability,
T > i In the early turbulent stage, t;,, St S, effects of the flame are distributed
over a maturing mixing zone, whose development is weakly influenced by the reaction.
At t 2 7, the fully mixed zone transforms into a conglomerate of pure-fluid patches of
sizes proportional to the mixing zone width. In this ‘stirred flame’ regime, temperature
fluctuations are consumed by reactions in the regions separating the pure-fluid patches.
This DNS-based qualitative description is followed by a phenomenology suggesting
that thin turbulent flame is of a single-fractal character, and thus distribution of the
temperature field is strongly intermittent.

1. Introduction

The Rayleigh-Taylor (RT) instability (Rayleigh 1883; Taylor 1950; Chandrasekhar
1961) occurs in many natural and man-made flows. Under constant acceleration,
produced e.g. by gravity, the instability develops into the RT turbulence (Duff, Harlow
& Hirt 1962; Sharp 1984), characterized by a mixing zone which continuously grows.
Many recent experimental (Dalziel, Linden & Youngs 1999; Wilson & Andrews 2002),
numerical (Dalziel et al. 1999; Cook & Dimotakis 2001; Young et al. 2001 ; Ristorcelli
& Clark 2004; Cabot & Cook 2006; Vladimirova & Chertkov 2009) and theoretical
efforts (Chertkov 2003 ; Chertkov, Kolokolov & Lebedev 2005) — last ones in the spirit
of the turbulence phenomenology (Kolmogorov 1941; Obukhov 1949; Corrsin 1951;
Frisch 1995) — have been devoted to analysis of turbulence inside the mixing zone. The
mixing fluids can also be involved in chemical or nuclear reactions, e.g. flame. A flame
front propagating against the acceleration is modified by the RT instability, which
leads to a reactive turbulence in the mixing zone. Studies of the externally stirred
turbulent flames belong to the general field of turbulent combustion (Damkoler 1940;
Williams 1985; Borghi 1988; Peters 2000; Kerstein 2002; Poinsot & Veynante 2005)
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and have many important applications. The buoyancy-driven, reactive turbulence
is believed to be the dominant mechanism for thermonuclear burning in type la
supernovae (Khokhlov 1995; Gamezo et al. 2003; Zingale et al. 2005). The interplay
of buoyancy, reactive transformation and turbulence also plays a crucial role in studies
of fusion (Freeman, Clauser & Thompson 1977) and large-scale combustion, such as
furnaces and fires (Cetegen & Kasper 1996; Tieszen 2001). Turbulence, generated by
buoyancy, facilitates mixing and thus counteracts the dynamical separation of fluids
(phases) due to reaction. To explain this competition between separation and mixing
is the main challenge emerging in the description of reactive flows (Kerstein 2002),
which also applies in the broader context of multi-phase fluid mechanics, e.g. the RT
turbulence of an immiscible mixture controlled by surface tension (Chertkov et al.
2005).

To clarify the nature of the competition between separation and mixing, let us
consider a typical reactive RT setting. Initially, the heavy, cold reactant is placed
on top of the light, hot product. As in the non-reacting RT instability, the mixing
zone develops. Since locally the reaction occurs only in the mixed fluid, turbulence
inside the mixing zone enhances the cumulative reaction rate. The effect of reaction,
however, is the opposite — the reaction consumes mixed material and potentially limits
the growth of the mixing zone. While diffusion and turbulence mix the reactant with
the product, the reaction converts the mixed fluid into the product, thus causing an
upward shift of the mixing zone as a whole.

In nature, this mechanism can take different forms. For instance, the flames in
supernova are driven by conduction and fall into category of premixed combustion;
reaction in liquids are driven by diffusion; and both mechanisms can be important
for hydrocarbon combustion. In many cases the question of separation and mixing
boils down to the question of energy transport and deposition. In numerical and
theoretical studies, the reaction details are often omitted and replaced by reaction
models. One-step reaction mechanisms are popular models, since they can represent
both premixed and non-premixed reactions (Poinsot & Veynante 2005). These
models describe the reactive transformation in terms of a single reaction progress
variable. If the driving mechanism is the diffusion of heat, the reaction progress
variable represents the temperature. If the driving mechanism is the diffusion of
species, the reaction progress variable represents composition. When the Prandtl
number (Pr) is equal to one, the reaction progress variable may represent either
temperature or composition. Turbulence can enhance the reaction, in the first case by
preheating the material (enhanced thermal diffusion) and in the second by enhancing
the stoichiometry. One-step reaction models are used in whole-star supernova
simulations (Khokhlov 1995) and are also frequently utilized in model studies of
reactive RT instability (Vladimirova & Rosner 2005; Constantin, Lewicka & Ryzhik
20006).

Existing studies of reactive RT setting have mainly focused on the initial stages of
instability (Lima, Van Saarloos & De Wit 2006) or on the instability restricted by
container walls in experiments (Bockmann & Muller 2004) and by domain sizes in
simulations (Khokhlov 1995; Vladimirova & Rosner 2005; Zingale et al. 2005). The
transverse (to direction of gravity) confinement results in a constant (on average)
cumulative reaction speed, presumably dependent on the domain size (Khokhlov
1995). In this system fluctuations, e.g. in velocity and density fields, do not grow with
time. It is still not clear whether reaction can stabilize the unconfined RT instability.
One suspects that the answer might depend on the relation between the time scale of
the RT instability and the reaction time scale.
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In this paper we study RT turbulence unconfined by walls, in the presence of
reactions slower than the RT instability. We consider the simplest (and still physically
relevant) setting, the Boussinesq approximation, where the variations in the fluid
density are small and are related linearly to the temperature contrast. The limit of
small density variations is widely used in both experimental and numerical studies
of the RT instability (Andrews & Spalding 1990; Linden, Redondo & Youngs 1994;
Snider & Andrews 1996; Dalziel et al. 1999; Young et al. 2001; Ramaprabhu &
Andrews 2004; Ristorcelli & Clark 2004). This limit is less common in traditional
combustion applications, but it is often adopted in studies focusing on mixing and
flame-turbulence interactions (Constantin et al. 2000; Peters 2000; Constantin, Kiselev
& Ryzhik 2001; Kerstein 2002; Vladimirova et al. 2003). Autocatalytic reactions in
liquids are often considered as models for premixed combustion and are sometimes
referred to as ‘liquid flames’ (Lima et al. 2006).

Thus, our system can be modelled by the incompressible Navier—Stokes equation
with the temperature-dependent buoyancy term, which is coupled with the advection—
reaction—diffusion equation governing the temperature evolution. The set of equations
is written as

v+ (V) = —Vp +vViv —2./g0, Vv=0, (1.1)
3,0 4+ (vV)8 = t'R(0) + k' V0, (1.2)

where v is the flow velocity; p is the pressure; and 6 represents temperature variations
and/or the chemical composition of the fluid. It is convenient to choose 6 equal to
zero in the cold (heavy) phase and unity in the hot (light) phase. Often, 6 is referred to
as the reaction progress variable. The reaction and production of heat is represented
by the first term on the right-hand side of (1.2); we refer to R(6) as the reaction
rate function and to t as the characteristic reaction time or reaction time scale. We
consider a single-step reaction (see Poinsot & Veynante 2005), where the reaction
rate is zero in the pure phases, i.e. R(0)=R(1)=0 and R=0(1) for 0 <6 < 1. The
buoyancy force, i.e. the last term on the right-hand side of (1.1), is directed along the
gravitational acceleration g. The factor o =(p; — p2)/(p1 + 02) K1 is the Atwood
number, where p; and p, are densities of the reactant and the product, respectively.
We assume that the kinematic viscosity v in (1.1) and the diffusion coefficient x in
(1.2) are comparable, and thus the Prandtl number is of the order of unity.

The simplicity of the physical model allows us to analyse it using direct numerical
simulations, that is resolving all hydrodynamical scales without subgrid modelling.
Inspired by numerical simulations, we build a unifying phenomenological description
explaining the interplay of turbulent mixing and reaction-mediated separation.
Specifically, we focus on predicting macroscopic and microscopic features of the
mixing zone, such as the upward transport of the mixing zone as a whole and
statistics of density fluctuations within the mixing zone.

We compare our simulations with the benchmark non-reacting case, corresponding
to =400 in (1.2). Phenomenological theory introduced by Chertkov (2003) and
Chertkov et al. (2005) and hereafter called the ‘phenomenology’ suggests that in the
non-reacting RT turbulence, velocity and density fluctuations are driven by buoyancy
at the scales L, and L,, respectively, both comparable to the mixing zone width H.
These fluctuations generate cascades (of energy and temperature) towards small
scales. The cascades terminate at the viscous scale n and (thermal) diffusive scale
rq, respectively (Chertkov 2003; Chertkov et al. 2005). The scales n and r; are of
the same order, provided the Prandtl number is of order unity. Previously conducted
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simulations of the non-reactive RT turbulence in the Boussinesq regime (Vladimirova
& Chertkov 2009) show that while the mixing zone width grows in time, n and r,
decrease with time. It was also found that the correlation radii of both the velocity
and temperature fluctuations L, and Ly grow in time as 0.05-0.1H. One special focus
was on resolving the internal structure of the mixing zone more systematically than
in the previous studies. It was shown that spatial correlations do not depend much
on the vertical position within the mixing zone. In particular, this means that the
relevant values of the major scales characterizing a snapshot of the RT turbulence
depend only weakly on the height of the horizontal slice within the mixing zone.

2. Preliminary considerations

Our ultimate goal is to study the reactive RT instability in all regimes, from the
non-reactive limit to the limit of fast reaction. In this paper we discuss the regime of
relatively slow reaction: the time scale of the non-reacting RT instability ¢, and the
characteristic reaction time t are assumed to be well separated, t > t;,5,. Here, ti
can be estimated as the characteristic time of instability growth in the linear regime,
tinst ~ «/Ag/A, where 4 is the typical size of the initial perturbation.

At the early stage, t < 7, development of the mixing zone and the range of turbulent
scales inside the mixing zone are weakly influenced by the reaction. Nevertheless a
cumulative effect of the reaction can be seen in the overall shift of the mixing zone,
as a whole, from the product side to the reactant side. To estimate the shift of the
mixing zone zy, let us integrate (1.2) along z. For the first term on the left-hand side
one arrives at 9,2, while the only other non-zero contribution is associated with the
reaction term R/t on the right-hand side. Since in this regime the heat production is
determined mainly by the mixing on the scale of the whole mixing layer, the reactive
contribution is estimated simply as H/t. Thus, 9,z; ~ H/t. Even though the overall
shift of the mixing zone at ¢t < t is smaller than H, z, grows faster than H, so that the
two scales become comparable at # ~ . From this time onwards the reaction effects
become more prominent.

The reaction becomes more effective when the turbulent turnover time at H,
estimated as ¢, exceeds the characteristic reaction time 7. In this regime the reactant
entrained into the mixing zone is burned out completely, and the overall shift of the
mixing zone z; should be of order H. This transition in the mixing zone evolution
is also accompanied by a qualitative modification of the temperature fluctuations in
the interior of the mixing zone. In contrast, the velocity distribution at all the scales
is expected to show only weak sensitivity to the reaction even at ¢ > t.

The two stages observed for r <t and ¢ >t will be called the ‘mixed stage’ and
the ‘segregated stage’, respectively. Although we deal with a continuously evolving
state, at any given time we can consider a statistically quasi-steady pattern of mixing
and separation inside the RT layer. It is interesting to put these patterns into
the perspective of turbulent combustion, using the well-established classification of
turbulent reactive systems. From this perspective (see Williams 1985; Peters 2000), the
mixed regime is called a ‘well-stirred reactor’ (Poinsot & Veynante 2005), ‘thickened
flame (Borghi 1988) or ‘broken reaction zone (Peters 2000), while the segregated regime
is the regime of ‘distributed reaction zones’ (Poinsot & Veynante 2005), ‘wrinkled—
thickened flame (Borghi 1988) or ‘thin reaction zone (Peters 2000). The transition
between the regimes occurring at t~t can be interpreted as crossing the Da =1
line on the turbulent combustion diagram (see Poinsot & Veynante 2005). Indeed,
the Damkoler number Da (Damkdler 1940) is defined as the ratio of the integral
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Run T hlam Slam
A 1600.00 160.00 0.10
B 177.78 53.33 0.30
C 64.00 32.00 0.50
D 40.32 25.40 0.63
E 16.00 16.00 1.00

TaBLE 1. Laminar flame parameter for simulations discussed in the text: reaction time 7,
laminar flame thickness A, =4./kt and laminar flame speed s,, =4./k/t for KPP reaction.

time scale to the reaction time scale, Da =t/t, which grows linearly in time for the
RT turbulence. The other popular dimensionless number in turbulent combustion,
the turbulent Karlovitz number Ka describes the transition between the regime
of distributed reaction zones/wrinkled—thickened flame/thin reaction zone and the
‘flamelet’ regime. The Karlovitz number is defined as the ratio of the chemical time
scale to the Kolmogorov time scale. For the slowly reacting RT turbulence studied
here, the flamelet regime does not apply; i.e. Ka is always much larger than unity, and
it increases with time. The laminar flame regime is also not observed in the systems
considered here; consequently the laminar flame thickness 4., is an irrelevant scale.

At t > 1 the main effect of the reaction on the mixing zone is in creation of domains
of pure phases (9 =0 and 6 = 1). In these domains the fluctuations in the reaction term
of (1.1) dominate fluctuations in the respective advection term, leading to complete
suppression (burning out) of temperature fluctuations. The domains are separated by
relatively thin (compared to domain size) interfaces at which burning occurs. The
interface width, also referred to as the turbulent flame thickness L, (that is the scale
at which the turnover time of velocity fluctuations is comparable to t) becomes much
smaller than L, at t > t due to the dominance of reaction.

Formation of the conglomerate of pure reactant and product domains should result
in a qualitative transformation of the single-point statistics of the temperature field
inside the mixing zone. A single-peak distribution centred around 6 = 1/2 transforms
into a distribution with two peaks, related to the emergence of pure-phase domains
corresponding to § =0 and 6 = 1. The qualitative differences in the projected stages
are summarized in figure 1 in which the temporal behaviour of different characteristics
is shown schematically.

3. Numerical results

The computational technique used in this work is similar to that described in
Vladimirova & Chertkov (2009). In our simulations, we use the popular Kolmogorov—
Petrovskii—Piskunov (KPP) model (Fisher 1937; Kolmogorov, Petrovskii & Piskunov
1937), where R =46(1 — 6) with 0 <6 < 1. The KPP model is not the only possible
choice of the function R(0). However, compared to other models, the KPP reaction
provides a relatively thick laminar front which can be simulated at coarser resolution
and makes computations more affordable. As before, we restrict ourself to the case
of Pr=1 and chose the units in which v=«x =1 and 2.&/g=1. The laminar flame
parameters for five simulation sets discussed below are shown in table 1.

We solved (1.1) and (1.2) using the spectral element code developed by Tufo
& Fischer (2001). We use elements of size 30° with 12 collocation points in each
direction. The size of our computational domain is 960 x 960 x 1440 physical units
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Scales

inst

Mixing Segregation

FIGURE 1. Schematic representation of the system evolution in log—log coordinates: the width
of the RT mixing layer H, the large-scale fluctuations of velocity and temperature L, and
Ly, the shift of the mixing layer z; due to reaction, the turbulent flame thickness L and the
dissipation scales n and r,. The stages of the early RT instability development and transition
to turbulence are shown shaded; 7 is the characteristic reaction time, separating well-mixed
and segregated regimes. In the mixed regime, the turbulent flame thickness corresponds to the
typical width of interfaces, separating pure-phase domains of size Lg. The temporal scalings
are phenomenological propositions discussed in §§2 and 4.

or 384 x 384 x 576 collocation points. We stop our simulation at time ¢ = 128, when
the width of the mixing layer approaches the size of the computational domain.
The boundary conditions are periodic in the horizontal (x, y) directions and are
characterized by no slip in the vertical (z) direction. The initial conditions, taken
at =0, include a quiescent velocity and a slightly perturbed interface between
the domains, determined by 6 =6y(z + 8). The function 6y(z) =0.5[1 + tanh(0.4z)]
describes the density profile across the interface, and 8(x, y) is a perturbation having
the spectrum with modes 18 <n <48 with spectral index 0. Here the spectral index
refers to the exponent of the wavenumber (see Ramaprabhu, Dimonte & Andrews
2005), and it describes the shapes of the perturbation spectra.

The least processed results of numerical simulations, snapshots of the temperature
field 6, are shown in figure 2; they are quite informative for our intuition. In run A
(t =1600) the structure of the mixing layer is practically indistinguishable from
the non-reacting case (see Vladimirova & Chertkov 2009), at least up to + =128. In
run C (t = 64) the reaction starts to influence the temperature distribution somewhere
between r =64 and t =96, where we observe emergence of regions of pure phases. In
run E (r =16) reactants and products are well separated by relatively thin interfaces
at t =32. Thus, a transition from the mixed stage to the segregated stage occurs at
t ~ 1, in accordance with the preliminary discussion of § 2.

In figure 2 we observe that the width of the mixing layer, defined as the
vertical distance between bubbles and spikes, is approximately the same in all cases.
Measurements of the half-width of the mixing layer, defined as H = [ R(9)dz (where
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FIGURE 2. Vertical and horizontal (z =z, centre of the mixing zone) slices of temperature
for three different reaction strengths.
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the overbar indicates averaging in a horizontal plane), confirm that H(r) is weakly
dependent on the reaction rate (see figure 3a). In figure 3(b) we plot the root mean
square (r.m.s.) of the vertical velocity and see that in all five cases the r.m.s. velocity
is practically the same. Moreover, all five cases exhibit similar internal structure of
the velocity field inside the mixing layer, as we see from the comparison of the
temperature and velocity correlation lengths L, and L, measured in the central
slice of the mixing zone (figure 3c). Following our earlier approach (Vladimirova &
Chertkov 2009) we define the velocity correlation length L, as the half-width of the
the normalized two-point pair correlation function of velocity, f(0)/f(L,)=2, with
f(ry=(v,(r))v,(ry + r))/(v?). The temperature correlation function is defined in a
similar way, but based on the temperature fluctuations, # — 6. Both temperature and
velocity correlation lengths differ by 20-30 % compared to each other for v ranging
from 16 to 1600. Similar to what was reported in Vladimirova & Chertkov (2009) for
the non-reacting case, Ly/H ~L,/H ~0.1. The viscous length n=(v?/{5|Vv|?))/*
decreases slowly with time in all cases, with less than 10% variation between
7 =16 and 7 =1600. The main conclusion here is that the velocity field is essentially
insensitive to the reaction in the slow-reaction regime.

Next we look at the shift of the mixing layer z; = [6dz, introduced in §2. We
compute the cumulative reaction, or bulk burning rate, z; = [ R(6)dz, and compare
it to the growth rate of the mixing layer H. Both quantities are shown as functions
of time in figure 3(d). We see that the bulk burning rate is greater for higher reaction
rates. The time when H and z; become comparable is approximately equal to .

It is not surprising that the bulk burning rate increases with decrease in t. However,
in addition to this obvious effect, we need to take into account the reaction efficiency,
which depends on how well the fluids are mixed within the mixing layer. To quantify
reaction efficiency, we use three related measures: z,7/H, the reaction rate averaged
over the whole mixing layer; R(z), the reaction rate averaged over the middle slice;
and A,,;., the fraction of well-mixed fluid in the middle slice, defined as a relative area
of the slice occupied by fluid with 0.25 <6 <0.75. In figure 3(e) we compare these
quantities. Good agreement observed between the reaction rates averaged over the
middle slice and the whole mixing layer suggests that the fraction of the well-mixed
fluid within the mixing zone does not vary significantly with the vertical position. In
fact, we had also made this observation earlier in our study of the non-reacting case
(Vladimirova & Chertkov 2009), where the mixing efficiency 40(1 — 0) stayed at the
constant level of =~ 0.8 across the whole layer. We also see that A,;, behaves similar
to R(zy); some differences reflect an arbitrary choice of the selected limits. The area
fraction A,;, as well as the average reaction rate in the middle slice and the reaction
efficiency characterize the transition from the mixed stage to the separated stage. In
the mixed stage A,;, is of order unity, and in the segregated stage it is a decreasing
function of time. Numerical results, shown in figure 3(e), confirm a decrease of A,
observed for ¢ > 7.

It is instructive to compare the states of the RT instability with different reaction
rates at times corresponding to the same /7. Unfortunately, to get meaningful results,
one must follow the evolution of the systems for times significantly exceeding the
transition time. The same issue makes it difficult to measure the value of the «
coefficient — the key parameter for the RT community, which is still under discussion
even after decades of intensive work. Taking this difficulty into account we are
pleasantly surprised that the plot of the burning efficiency versus 7/t demonstrates
the alignment of the curves already within the limited time range available in our
simulations (figure 4).
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FIGURE 3. (a) Half-width of mixing layer H; (b) r.m.s. of vertical velocity at z;; (¢) pumping
scale L, (dashed lines) and scale Ly (solid lines) measured at z,; (d) bulk burning rate z,
(solid lines) compared to growth rate of RT instability / (dashed lines); (e) burning efficiency
measured as ratio zy7/H (solid lines), the average reaction rate R(zy) in the middle slice
(dashed lines) and well-mixed fraction of the slice area A, (dotted lines); (f) turbulent flame
thickness in the middle slice obtained using ‘expanding circle’ technique. Arrows in (d) and (f')
show the reaction time.
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FIGURE 4. Burning efficiency measured as the ratio zy7/H (solid lines) and the average
reaction rate R(zy) in the middle slice (dashed lines) as function of /7.

Since the reaction at the central slice (z =z ) describes the bulk burning rate so well,
we pay particular attention to the temperature distribution within the slice, shown
in figure 5. In run A the probability distribution function (p.d.f.) of temperature
evolves in time almost as if there were no reaction at all. It starts from a single-peak
distribution determined by the initial conditions (slightly perturbed diffused interface).
Then, during the linear stage of the RT instability, r <16, the p.d.f. transforms into
the two-peak shape and becomes single peaked again at ¢ ~48. The transformation
from one to two peaks corresponds to the transition to the nonlinear regime of the
RT instability, associated with secondary Kelvin—Helmholtz-type shear instability and
formation of RT mushrooms, while transition from two peaks to one corresponds to
the destruction of RT mushrooms and formation of the turbulent mixed zone. When
reaction is stronger, as in runs B and C, we observe yet another transformation in
the p.d.f., namely the appearance of a narrow peak around 6 =0 and decrease in
the middle of the 6 range at ¢ ~t. The transition to the two-peaked shape at r~t
is of interest to us, since it indicates transition to the segregated regime. (In runs D
and E, this one-two-one-two peak pattern is not noticeable because t is of the order
of, or shorter than, the transition time from linear RT instability to nonlinear RT
instability.) Quantitatively the process of the transition to the segregated regime can
be described by integrating the p.d.f. over some interval in the vicinity of 6 =1/2.
Selecting the interval 0.25 <6 < 0.75, we obtain A, described earlier.

The well-mixed fraction A,y is related to the turbulent flame width L ; or the width
of the layer separating the pure-phase domains. Aiming to study the geometry of the
turbulent flame we measure L ; in the following way: for each point with 1/4 <6 <3/4
we find the largest radius of the circle around this point containing only points with
1/4 <6 < 3/4; this length, averaged and multiplied by four, represents the typical
width of the burning region L ¢, shown in figure 3f. We observe that (i) L increases
with 7; (i) Ly ~ Ly for t <t (compare figure 3f’), and L grows with time but slower
than L,, and so L,/L, decreases with time.

To summarize, we have observed in our numerics the transition at t~71 from
mixed regime to segregated regimes in variety of ways, from visual comparison of
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5. The p.d.f. of temperature in the middle slice. (a)—(e) Time evolution of the p.d.f.s.

(f) Comparison of the p.d.f.s at t =128 for different reaction times t.
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temperature fields and temperature p.d.f.s to direct measurements of reaction efficiency
and turbulent flame thickness.

4. Phenomenology

This section focuses on analysis of the asymptotic (1> 1), segregated regime,
supposedly characterized by extended inertial interval and scaling behaviours. The
simulations discussed above do not run long enough to reach and accurately
resolve this regime. However, the simulations are in qualitative agreement with the
phenomenology constructed, thus providing a starting point for more ambitious
simulations in the future.

We first review the relevant facts from ‘non-reacting’ RT turbulence (t =o0). In
this case the phenomenology (Chertkov 2003), supported by numerical simulations
(Zingale et al. 2005; Cabot & Cook 2006) and some (though limited) experimental
observations, can be summarized as follows. At ¢ > t;,;, the width of the mixing zone
grows as H oc t2. Velocity fluctuations within the mixing zone are described by the
Kolmogorov cascade, whereas temperature fluctuations follow the Corrsin—-Obukhov
cascade. Both cascades are driven by the largest RT scale (the spikes and the bubbles)
at L, ~ Ly oc H. Even though this driving scale grows with time, turbulence at smaller
scales is adiabatically adjusted to the growth. The adiabaticity is due to the monotonic
decrease of the turbulence turnover time with the scale.

As discussed above and illustrated in figure 1, for ¢ <t the development in the
reacting case proceeds as in the benchmark non-reacting case. Here 6 is well mixed
within the mixing zone, and the single-point distribution of the temperature is
peaked around the median value of 6 =1/2. Typical fluctuations of the velocity
and temperature inside the mixing zone (measured in terms of the differences §,v and
5,6 between two points separated by a distance r) are described by the Kolmogorov—
Corrsin—Obukhov estimates,

8u~(Ly/)r/L)Y3, 8,0 ~(r/L)3, if Ly>r > n,ry, (4.1)

which are insensitive to the reaction. The viscous and thermal diffusion scales n and
rq4 can be estimated as n~ry~ (vt)**/LY? oc t=1/4, provided the Prandtl number is
of order unity.

Since the velocity correlation functions are formed by the direct cascade determined
by the nonlinear term in (1.1), the driving effectively occurs at the scale L, ~ Ly, with
the former one being not very sensitive to the reaction statistics and thus determined
by the same estimates as in the non-reacting case (4.1). (Weak sensitivity of the
velocity statistics to the reaction was also observed in our simulations; see figure 3.)
In contrast, the 6 statistics are strongly modified at 7 > t when pure-phase regions are
formed separated by relatively thin interfaces (see figures 3 and 5). The interface width
L is estimated by balancing advection and reaction terms in (1.2), §,v8,0/r ~6,6/t.
One thus derives the following estimate for the turbulent flame thickness:

LfNLg(ULHT/L9)3/2 ~ g13/2t1/2' (42)

The turbulent flame thickness does grow with time but in such a way that both Ly /L ¢
and L;/r; also grow as time advances. (Although our numerical data do not run
long enough to illustrate the increase of L, with time, we did observe the increase of
L, with t; see figure 3f)

Let us now exploit the Kolmogorov—Obukhov relation, calculating the time
derivative of 6(r{)f(r,) in accordance with (1.2) and then averaging the result over a
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slice perpendicular to the z-axis for a fixed value of r =r; —r,, where L, <r < L.
Making use of the adiabaticity and neglecting the reactive and diffusive terms in (1.1)
and (1.2) one derives

V{((v(r) = v(r))@(r1) — (0(r1)(O(r2) — (0(r2)))) ~ &,

where the flux term on the right-hand side originates from driving at the large scale,
v,9,(0), due to the large-scale temperature gradient set by buoyancy (Shraiman &
Siggia 1994). Using the Kolmogorov estimation (4.1) for §,v, one arrives at

Sa(r) = ((8,:0)°) ~ eg, ' *r? ~ (r/H). (4.3)

The most important assumption, made while deriving (4.3), concerns neglecting the
reactive contribution to the 6% balance. This assumption will be justified later in the
section.

At r> Ly, (4.3) also describes the probability for two points separated by r of
falling in two distinct domains of 8 ~0 and 6 ~ 1, or vice versa. Exactly the same
probabilistic arguments apply to a temperature structure function of any positive
order, thus resulting in the asymptotic independence of the respective scaling exponent
of the order

Su(r) = (18,61") ~ (r/H)>. (4.4)

The expression implies strong intermittency of the temperature field, as the ratios
S,/ (8:)"* ~ (H/r)"=2/3 all grow with scale at n > 2. Notice that these arguments also
apply to the immiscible RT, of the type discussed in Chertkov et al. (2005).

The expressions (4.3) and (4.4) suggest that the flame interface is fractal and,
moreover, single fractal (as opposed to multi-fractal; see e.g. the discussion in
Sreenivasan, Ramshankar & Meneveau 1989 and Kerstein 1991). The fractalization
of the flame is properly explained by dependence of the fraction A,;, of the mixing
zone on the turbulence flame thickness L. Taking (4.3) and (4.4) at r — L, one
estimates A, ~(Ly/H)**~t/t. This also implies that z; ~ H, thus confirming the
general conclusion made in § 2.

Now we are ready to justify the approximation leading to (4.3). Let us
estimate contribution of the flame/reaction term w= ([0(r;) — (8(r1))]R(r>))/T to
the aforementioned A2 balance relation. The product is non-zero only if r, falls
inside the interface. Then p is much less than (R)/t, since 6(r() — (6(ry)) is of order
unity, and it also has zero average. The average (R) is determined by the fraction
of the well-mixed region within the mixing zone, A, ~(L;/H)*?. One concludes
that, indeed, u <1/t ~¢gy at r > L, thus justifying the assumption made above in
deriving (4.3) and subsequently (4.4).

Turning to the discussion of the range of scales smaller than L, but larger than r,,
one notices that the reaction term does not contribute to the 2 balance, as it is much
smaller than the respective advection contribution. At these scales, where the direct
effect of the reaction term is irrelevant and the Kolmogorov velocity estimates still
survive, one expects that the Obukhov—Corrsin scaling 8,6 oc r'/? applies. Matching
the self-similar behaviour with (4.4) at L, one derives the following scaling relation
for the structure functions at L >>r > ry:

Su(r) ~ (L /HYP(r/Lg)". (4.5)

This formula allows a simple interpretation: the first term on the right-hand side
stands for the fraction A, of the well-mixed region within the mixing zone in which
the reaction takes place, while the second term accounts for the Corrsin—-Obukhov
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decay of correlations with the decrease in scale. The main contribution to the right-
hand side of (4.5) comes from the interfacial domains, while contributions associated
with pure-phase domains, where 6 ~0 or 6 ~ 1, are much smaller.

5. Conclusions

In this manuscript we have analysed the reactive RT turbulence in the case of a
slow flame realized when the typical reaction time 7 is larger then the time of RT
instability development #;,,;. The RT instability leads to formation of the mixing zone
at t~ty,y. Further development of the mixing zone is roughly split into the early
turbulent stage, T 2t 2ty characterized by well-mixed hot and cold phases, and
the later stage, t = v, where pure state phases are segregated. In the early stage, the
system is only mildly sensitive to the reaction (flame), resulting in a slight shift of the
mixing zone as a whole but no visible feedback of the flame on velocity distribution.
The velocity fluctuations are still insensitive to the reaction; at ¢ =7, however the
temperature fluctuations become modified significantly. In this regime, burning takes
place within thin interfaces separating large patches of pure phases. Our numerical
simulations confirm the basic prediction of the transition at ¢ ~ 7. All the qualitative
features expected from the transition are observed in the simulations. Given that our
numerical resources were not sufficient for detailed analysis of the asymptotic, ¢ >,
stage, we rely here on the phenomenology. Separation of the advective range for
density fluctuations in two ranges and formation of a single-fractal flame interface
are our two main phenomenological predictions. This highly intermittent behaviour
of density fluctuations is in a great contrast with what was observed without reaction.
These and other predictions of the phenomenology are subjects for juxtaposition with
future numerical and laboratory experiments.

Notice that the general picture of mixing at ¢ > 7 discussed above is reminiscent
of the immiscible turbulence discussed in Chertkov et al. (2005). In both cases large
regions of pure phases are separated by thin interfaces. Viewed at the scales larger
than the interface width, the interfaces are advected passively. Moreover, strong
intermittency in the density fluctuations, reported above for the reactive case, also
takes place in the setting of externally stirred (e.g. by gravity) immiscible turbulence.

Finally, our phenomenology also applies to other regimes of turbulent flames,
e.g. those realized in combustion engines, where the turbulent flame width is
positioned in between the integral scales of turbulence and the viscous/diffusive
scales, L,, Lo > L;>n,r,.
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